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Abstract

This study measures the effect of industrial robots on workplace fatalities and hos-

pitalizations at the commuting zone level in the US. The empirical strategy exploits

potentially exogenous variation in robot exposure due to technological progress. Fatal-

ities and hospitalizations are tabulated using inspection data from the Occupational

Safety and Health Administration. The analysis indicates that industrial robots im-

proved workplace safety, and this effect is most evident in automobile manufacturing.

At the mean, industrial robots in automobile manufacturing account for approximately

28.7 percent of the decline in fatalities and hospitalizations overall.
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1 Introduction

The adoption of industrial robots in the US workplace has increased steadily during

the last three decades, as shown in Figure 1. To determine the welfare consquences of

robotization, research must assess both its negative and positive consequences. A negative

consequence of industrial robots, particularly for workers in the industries most affected, is

a decrease in employment and wages (Acemoglu and Restrepo, 2020). A potential benefit,

however, is improvements in workplace safety. Indeed, as Figure 1 illustrates, workplace

fatalies and injuries decreased in tandem with the adoption of industrial robots, possibly

reflecting a causal relationship. Industrial robots may improve safety by dissolving more

dangerous employment and by improving working conditions among extant employment.

The online retailer Amazon is an example, which aims to reduce recordable incidents by

50% through developing and testing robots for fulfillment centers.1 Thus, to understand the

effects of industrial robots on welfare, research must account for potential improvements in

workplace safety.

To contribute to the research, this study estimates the effect of industrial robots

on workplace fatalities and hospitalizations. Following Acemoglu and Restrepo (2020), the

empirical strategy exploits variation in robot exposure across 722 commuting zones from

1993 to 2007. The measure of robot exposure combines variation in industry composition in

a baseline year with industry-level changes in robot penetration over time, similar to a Bartik

(1991) instrument. To tabulate fatalities and hospitalizations at the commuting zone level,

we utilize inspection records from the Integrated Management Information System (IMIS) of

the Occupational Safety and Health Administration (OSHA).2 The OSHA accident rate is

calculated as the number of fatalities or fatalities and hospitalizations, combined, per 100,000

workers. The denominator of the rate, employment by commuting zone, is tabulated from

1New technologies to improve Amazon employee safety (https://www.aboutamazon.com/news/innovation-
at-amazon/new-technologies-to-improve-amazon-employee-safety).

2Lee and Taylor (2019) and Sojourner and Yang (2020) also measure workplace safety based on OSHA
inspections due to severe and fatal accidents.
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County Business Patterns (CBP). To support the use of IMIS data as a measure workplace

safety, we benchmark the OSHA rates to the BLS fatality rate at the industry level and show

that the two are highly correlated.3

The empirical analysis reveals several insights. First, the estimated effect of robot

exposure on workplace fatalities is generally small and statistically insignificant. Second, the

estimated effect of robot exposure on workplace fatalities and hospitalizations combined is

negative and statistically significant, but implausibly large “at the mean” among all com-

muting zones. Third, the large magnitude is attributable to four outliers with respect to

robot penetration: Detroit, Michigan; Lansing, Michigan; Saginaw, Michigan; and Cleve-

land, Ohio. These outliers reflect greater employment shares in automobile manufacturing,

the industry with the greatest increase in robot penetration. The implausibly large esti-

mates are not robust to the exclusion of the four outliers from the sample. Fourth, when

the effect of robot penetration is allowed to differ between automobile manfucturing and all

other industries, only the effect of industrial robots in automobile manufacturing is statis-

tically significant. At the mean, industrial robots in automobile manufacturing account for

approximately 28.7 percent of the decline in fatalities and hospitalizations overall.

A concern with the empirical strategy is the use of the Bartik-like instrument for

identification. A recent critique of the Bartik instrument is that it depends on the exo-

geneity of “shares” across units of analysis (Adão et al., 2019; Goldsmith-Pinkham et al.,

2020) - in this case industry shares across commuting zones. In effect, the identification

strategy compares commuting zones with shares weighted towards industries with greater

robot penetration to commuting zones with shares weighted towards industries with lesser

penetration, and the concern is that the former may have exhibited improvements in work-

place safety that were independent of industrial robots. One possibility is that demographic

characteristics changed differentially across commuting zones that were both correlated with

robot penetration and had a direct effect on workplace safety. Another possibility is that

3The BLS fatality data cannot be tabulated at the commuting zone level and thus is not suitable for
analysis.
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robot penetration may have been correlated with other capital improvements that improved

workplace safety, such as automation that is not reprogrammable or multipurpose.4 Because

the empirical results are heavily driven by auto-centric Detroit, Michigan, this concern is

especially problematic.

We provide three counterpoints. First, we control for changes in demographic char-

acteristics over time, rather than just at baseline as in Acemoglu and Restrepo (2020). The

results are robust to the inclusions of the additional control variables. Second, we provide

a qualitative analysis of Detroit, highlighting how industrial robots may not only have im-

proved workplace safety, but were specifically designed for tasks that were considered, “dirty,

dull, and dangerous (Dolan, 2017).” Finally, we note that, while non-robotic automation is

very likely correlated with industrial robot penetration, their effects on workplace safety are

equally important to identify. In the absence of separate data on non-robotic automation,

industrial robots serve as a proxy for automation more generally, and the effect estimates

should be interpreted accordingly.

This study contributes to a growing literature on how industrial robots affect health.

To our knowledge, only one study focuses on safety at the workplace, Gihleb et al. (2022).

In their study, the outcome variable is the rate of cases involving days away from work, job

restrictions, and job transfers. While the incidence of these cases is greater than the incidence

of fatalities and hospitalizations, the value of statistical injury is substantially less than the

value of life.5 They find that a one standard deviation increase in their commuting zone-level

measure of robot exposure decreased work-related annual injury rates by 1.2 cases per 100

workers. While their finding suggests that robots may decrease less severe cases involving

days away from work, job restrictions, and job transfers, this effect may not necessarily

extend to more severe cases of fatalities and hospitalizations.

4According to the International Federation of Robotics (IFR), an industrial robot is defi
ned as ”automatically controlled, reprogrammable, and multipurpose.”
5In 2020, the rate of total recordable injuries in private industry was 2.7 per 100 full-time equivalent

workers, compared to the fatal work injury rate of 3.4 per 100,000 full-time equivalent workers. The value of
a statistical life is orders of magnitude larger than the value of a statistical injury, estimated to range from
$6.3 to $15.2 million and from $25,000 to $89,000, respectively.
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Additional research examines the effects of industrial robots on health at the pop-

ulation level. First, using data from the Current Population Survey, Gunadi and Ryu (2021)

conclude that industrial robots improved self-reported health among low-skilled workers,

possibly reflecting a shift away from physical tasks. Second, using data from the Center for

Disease Control and Prevention and the Behavioral Risk Factor Surveillance System, Gihleb

et al. (2022) find that industrial robots increased drug and alcohol-related deaths, decreased

job intensity and disability, but had no effects on mental health and work and life satisfac-

tion. Finally, O’Brien et al. (2022) find that industrial robots increased all-cause mortality

at the population level.

Collectively, the research suggests that industrial robots may have improved safety

in the workplace, but only for less severe cases such as days away from work and hospital-

izations, and not more severe cases of fatalities. However, the net effect of industrial robots

on population health remains inconclusive.

2 Empirical Model

The empirical objective is to estimate the effect of robot exposure on workplace

safety in the US. Following Acemoglu and Restrepo (2020), the empirical strategy exploits

variation in robot exposure across 722 commuting zones. The model is given by the following

equation:

∆Yct = β0 + β1∆REct + β2Xct + τt + εct. (1)

∆Yct is the change in workplace safety in commuting zone c in period t, ∆REct is the

change in robot exposure, and εct is the error term. The model controls for commuting zone

characteristics Xct and period fixed effects τt.

To construct variation in robot exposure at the commuting zone level, we combine

variation in industry composition across commuting zones with robot penetration by industry

4



at the aggregate level, similar to the Bartik (1991) instrument. Specifically,

∆REct =
∑
i

lcit∆APRit. (2)

The term lcit is the share of employment in commuting zone c dedicated to industry i at

period t, and ∆APRit is the aggregate change in robot penetration in industry i, adjusted

for robot growth due to industry expansion. A general formula for the latter is given by the

following equation:

∆APRit =
Mit′ −Mit

Lit

− git
Mit

Lit

(3)

The first term measures the increase in robots Mit′ − Mit relative to employment Lit in

thousands of workers, and the second term git adjusts for changes in robots due to industry

growth. The intuition is that, by measuring robot exposure based on aggregate trends, vari-

ation in exposure across commuting zones is attributable to systemic technological progress

rather than factors specific to commuting zones.

A concern for identification is that industry composition, upon which robot expo-

sure is based, may be correlated with other factors that affect workplace safety. If these other

factors were omitted from the model in equation (1), their impact on workplace safety would

be improperly attributed to robot exposure in the estimation of β1. To address this issue, the

model includes commuting zone characteristics Xct and period fixed effects τt. The commut-

ing zone characteristics are provided by Acemoglu and Restrepo (2021) and include the log

of the population, share of females, share aged 65 and older, shares of educational attainment

(no college, some college, college professional degree, and masters or doctoral degree), shares

of race (Whites, Blacks, Hispanics, and Asians), share of employment in manufacturing,

share of employment in light manufacturing, and share of female employment in manufac-

turing. These data come from the US Census. The model also includes measures of import

competition from China (Autor et al., 2013) and the share of routine occupations (Autor
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and Dorn, 2013). Finally, the model controls the changes in demographic characteristics

over the analysis period. This addresses the concern that changes in demographics may have

a direct effect on workplace safety and are correlated with industry composition and thus

robot penetration.

3 Data

3.1 Robots

Robot exposure is measured using survey data from the International Federation of

Robotics (IFR).6 Since 1993, the IFR has collected annual information on industrial robots

for over 50 countries. For many European countries, the data were collected by year and

industry since 1993. For the US, aggregate data have been collected since 1993, but data by

industry are available only for 2004 onwards. When reported by industry, the IFR utilizes

19 broad classifications, 13 of which are in manufacturing.7

To estimate the effect of robot exposure on workplace safety using equation (1),

we utilize IFR data provided by Acemoglu and Restrepo (2020) and follow their convention.

First, we estimate a stacked difference model between 1993 and 2000 and 2000 and 2007.

Second, to construct the adjusted measure of robot penetration in equation (3), we use robot

data for five European countries: Denmark, Finland, France, Italy, and Sweden. Specifically,

the adjusted robot penetration in equation (3) is calculated using the following equation:

∆APREuro
it =

∑
j

1

5

(
M j

it′ −M j
it

Lj
i,1990

− gjit
M j

it

Lj
i,1990

)
, (4)

with employment Lit measured in 1990. As Acemoglu and Restrepo (2020) argue, using

6The IFR data come from Acemoglu and Restrepo (2021).
7The industries are agriculture, automotive, construction, electronics, food and beverage, wood and fur-

niture, miscellaneous manufacturing, basic metals, industrial machinery, metal products, minerals, mining,
paper and printing, plastics and chemicals, education and research, services, textiles, utilities, and shipbuild-
ing and aerospace.

6



robot data from Europe, which leads the US in robot adoption, further ensures that the

measure of robot penetration reflects systemic technological progress rather than factors

specific to US commuting zones.

Acemoglu and Restrepo (2020) note important properties of the robot exposure

measures. First, the measure of robot penetration by industry in equation (4) using Euro-

pean data is highly correlated with the same measure using US data. This suggests robot

penetration in the US is driven largely by technological progress, as measured by robot pen-

etration in Europe. Second, the European-based measure in equation (4) does not appear

to mimic other industry-level trends, such as import competition and offshoring. Third, the

geographic variation in robot penetration is substantial. This variation persists even after

excluding the automotive industry, which experienced the largest increase in robot penetra-

tion. Finally, robot exposure was associated with the number of robot integrators at the

commuting zone level.8 This suggests that the measures of robot exposure indeed reflects

economic activity involving robots.

3.2 OSHA Accidents

To measure workplace safety as an outcome variable to equation (1), we use data on

OSHA inspections of work-related fatalities or hospitalizations. OSHA defines a fatality as an

employee death resulting from a work-related incident or exposure, and defines a catastrophe

as the hospitalization of three or more employees resulting from a work-related incident or

exposure. According to OSHA standard 1960.29(b), “each accident which results in a fatality

or the hospitalization of three or more employees shall be investigated to determine the causal

factors involved.” According to OSHA directive CPL 02-00-137, exceptions include fatalities

by natural causes (e.g. heart attack), workplace violence, and motor vehicle accidents on

public roads or highways.

The data on OSHA inspections come from the IMIS (OSHA, 2021). The data are

8The data on robot integrators come from Leigh and Kraft (2018)
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reported at the accident level and the individual level. At the accident level, the IMIS reports

the name and address of the inspected establishment and the findings of the investigation. At

the individual level, the IMIS includes the Fatality and Catastrophe Investigation Summaries

derived from OSHA Form 170. These summaries provide additional information about the

accident, including whether a worker had been hospitalized or had died. The accident-level

data are merged with individual-level data to determine the number of workers involved in

a particular accident and the number of workers who had died, if any.

Figure 2 illustrates the number of OSHA-inspected fatalities and hospitalizations

from 1993 to 2011.9 During this period, the number of fatality investigations averaged 1,838

per year, and the number of hospitalization averaged 2,176 per year. Inspections decreased

around 2008, coinciding with the Great Recession.

The outcome variable in equation (1) is defined as the change in the natural log of

the annual OSHA accident rate:

∆Yct = ln(Yct′)− ln(Yct). (5)

The annual OSHA accident rate Yct is calculated as the number of OSHA-inspected fatalities

or hospitalizations per 100,000 workers:

Yct =

[
Act + 1

Ect

]
100, 000. (6)

The numerator Act is the number of OSHA-inspected fatalities and hospitalizations tabulated

from the IMIS, and Ect is employment and is tabulated from the Current Business Patterns.10

Two rates are considered: fatalities only and fatalities and hospitalizations combined. To

reduce noise, annual rates are calculated using three-, four-, and five-year averages. For

9Although catastrophe is defined as three or more hospitalizations, the Fatality and Catastrophe Investi-
gation Summaries contain data on accidents with fewer than three hospitalizations and no fatalities. These
accidents are included in the empirical analysis.

10To address the issue of taking the natural log of zero, the numerator is the number of OSHA-inspected
fatalities or hospitalizations plus one.
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example, to calculate the numerator in 1993 using a three-year average, the annual number

of accidents is averaged across years 1993, 1994, and 1995. Inspections are assigned to

commuting zones based on the zip code reported in the IMIS.

The Bureau of Labor Statistics also provides data on workplace safety, but these

data are insufficient for estimating equation (1). The first data source comes from Survey

of Occupational Injuries and Illnesses (SOII). These data report the total recordable case

(TRC) rate per 100 full-time equivalent workers. The TRC rate includes illness and injuries

involving days away from work, job restrictions, and job transfers. The second data source

comes from the Census of Fatal Occupational Injuries (CFOI). These data report the fatality

rate per 100,000 full-time equivalent workers. Neither the SOII nor the CFOI data are

available at the commuting zone level and thus cannot be used for estimating equation (1).

Additionally, the OSHA rates that we derive from the IMIS are not directly com-

parable to the TRC rate or fatality rate computed by the BLS. In fact, during the analysis

period, the total number of OSHA-investigated fatalities equals about 70% of the total num-

ber of fatalities reported in the CFOI. One reason is that OSHA does not have jurisdiction

over all workplace fatalities, such as fatalities due to motor vehicle accidents that occur on

public roads or highways.

Nonetheless, we compare OSHA and BLS data at levels for which data are available.

Figure 2 plots the number of OSHA fatalities and hospitalizations alongside the number of

BLS fatalities, which show similar trends over time. Figure 3 illustrates the relationship

between the OSHA accident rates and the BLS rates by industry in 1993. Panel A is the

OSHA fatality rate, and Panel B is the OSHA fatality and hospitalization rate. Each marker

is an IFR industry, the size of the marker is proportional to employment in each industry, and

both panels include the best linear fit.11 As shown, the OSHA accident rates are positively

correlated with the BLS fatality rate at the industry level. Weighted by employment, the

correlation between the OSHA fatality rate and the BLS fatality rate is 0.816.

11The agricultural sector is excluded as the injuries and illnesses are likely to be underestimated (Leigh
et al., 2014)
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4 Results

4.1 Graphical Analysis

The relationship between robot penetration and workplace safety is first examined

graphically. Figure 4 plots the outcome variable ∆Yct in equation (1) against robot penetra-

tion ∆REct using three-year averages for the OSHA rate and stacked differences from 1993

to 2000 and from 2000 to 2007. Panel A is the OSHA fatality rate, and panel B is the OSHA

fatality and hospitalization rate. Each marker is a commuting zone in one of the two time

periods, the size of the marker is proportional to employment in each commuting zone, and

both panels include the best linear fit weighted by commuting zone employment.

In Panel A, the relationship between between robot penetration and the OSHA

fatality rate is only slightly negative. The greatest robot penetration occurred in the com-

muting zone of Detroit, Michigan, from 2000 to 2007, which lines up with the best linear

fit. In contrast, the relationship between robot penetration and the OSHA fatality and hos-

pitalization rate is more negative, as shown in Panel B. Additionally, the commuting zone

of Detroit lies below the best linear fit. Taken together, an effect of robot penetration on

workplace safety appears plausible for fatalities and hospitalizations, but less so for fatalities

alone. Moreover, the effect on fatalities and hospitalizations appears attributable in large

part to populous Detroit.

4.2 Regression Analysis

Table 1 presents the estimated effect of robot penetration on OSHA fatalities using

equation (1). Panels A, B, and C differ by the number of years used to calculate the average

OSHA fatality rate, and the columns correspond to models that differ by control variables.

In column (1), where the model contains no control variables, the relationship between

robot penetration and the OSHA fatality rate is negative. The negative relationship is not
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statistically significant using a three-year average, but is significant at the five percent level

using a four-average and at the ten percent level using a five-year average.

In contrast, in column (2), where the model includes region and period fixed ef-

fects, the estimates become positive and statistically insignificant. The change in sign is

attributable specifically to the inclusion of period fixed effects, rather than region effects.

This reflects that the average growth in robot exposure was greater from 2000 to 2007 com-

pared to 1993 to 2000 (1.40 and 0.65, respectively) and that the average decline in the fatality

rate was greater from 2000 to 2007 compared to 1993 to 2000 (-0.13 and -0.03, respectively).

Thus, the slightly negative relationship between robot penetration and the OSHA fatality

rate in panel A of Figure 4 and column (1) of Table 1 is not robust to period effects.

The models in columns (3) through (6) introduce additional control variables,

specifically demographic characteristics in levels (3), industry employment (4), Chinese im-

port competition and share of routine employment (5), and changes in demographic char-

acteristics (6). As shown, the control variables account for variation in workplace fatalities,

increasing the R-squared from 0.03 in column (2) to 0.104 in column (6), but the relation-

ship between robot penetration and the OSHA fatality rate remains positive and statistically

insignificant.

Using the same specifications in Table 1, Table 2 presents the estimated effect of

robot penetration on OSHA fatalities and hospitalizations. In contrast to fatalities, the

estimated effect of robot penetration on fatalities and hospitalizations is negative across all

specifications. Moreover, all but one of the estimates is statistically significant at the ten

percent level, and several are significant at the one percent level. Thus, a causal effect of

robot penetration on fatalities and hospitalizations seems more plausible.

One concern, however, is that the estimated effects on fatalities and hospitalizations

at the mean are implausibly large. For example, the point estimate in panel A, column 6, is

-0.129. In comparison, the weighted mean of robot exposure is 1.05, and the weighted mean

of the outcome variable is -0.087. Taken together, the estimated effect of robot penetration
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at the mean, determined by multiplying -0.129 and 1.05, exceeds the average decline in

hospitalizations of -0.087.

The implausibly large point estimates reflect that the least squares estimand is

highly sensitive to outliers. As shown in Figure 4, an outlier with respect to robot pene-

tration and fatalities and hospitalizations is Detroit from 2000 to 2007. The relatively large

increase in robot penetration in Detroit reflects two factors. First, a substantial share of

employment in Detroit is in automobile manufacturing in comparison to other commuting

zones. Second, automobile manufacturing exhibited the greatest increase in robot pene-

tration among the IFC industries. Three other commuting zones that have larger shares

in automobile manufacturing also exhibited larger increases in robot penetration: Lansing,

Michigan; Saginaw, Michigan; and Cleveland, Ohio. Interestingly, among these four com-

muting zones, hospitalizations decrease as robot adoption increases.

To assess the sensitivity of the estimates in Table 2 to the four outliers, Table 3

excludes the outliers from the sample.12 As shown, many of the estimates are positive and

statistically insignificant. The estimates that remain negative are smaller in absolute value

in comparison to Table 2, and the only statistically significant estimate, in Panel C, column

(1), is not robuts to the inclusion of control variables. The main conclusion from these results

is that the effect of robot penetration on fatalities and hospitalizations is most likely to be

found among the four outliers, and more specifically in Detroit.

Another approach to understanding the role of the automobile industry is to include

separate measures for robot penetration in the automobile industry and robot penetration

in all other industries. The results from the models are presented in Table 4. As shown,

the estimated effect of robot penetration on fatalities and hospitalizations appears greater

for industrial robots in automobile manufacturing compared to other industries, although

the differences are not statistically significant. Regarding automobile manufacturing, all

the estimates are negative and statistically significant at the five percent level, and many

12The four outliers are excluded in both periods, decreasing the sample size by eight.
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are statistically significant at the one percent level. In comparison, the estimated effects of

industrial robots in other industries are smaller in absolute value, and most are statistically

insignificant.

When interpreting the results in Table 4, it is important to consider the estimated

effects sizes in comparison to the change in robot penetration. Although automobile man-

ufacturing represents just one of 19 IFR industries, it represents a significant share of the

change in robot penetration. This is evident by the mean values of the robot penetration

variables: the mean value for industrial robots in automobile manufacturing is 0.28, com-

pared to 0.77 for all other industries. Factoring these means with the estimates in Panel

A column (6), for example, yields -0.037 for automobile manufacturing and -0.077 for other

industries. These figures, in comparison to the mean of the outcome variable of -0.129, imply

that the aggregate decline in fatalities and hospitalizations is only partially attributable to

automobile manufacturing, at the mean accounting for approximately 28.7 percent. The

standard errors for industrial robots in other industries do not rule out potentially large and

economically meaningful effects.

4.3 Qualitative Analysis of Automobile Manufacturing

According to the results, industrial robots are associated with improvements in

workplace safety. The case is strongest for industrial robots in automobile manufacturing

and with respect to fatalities and hospitalizations combined, rather than fatalities alone.

To understand the mechanism for these findings, we turn to qualitative anlaysis of

automobile manufacturing. According to a study by the Brookings Institute, the automobile

industry employed nearly half of all industrial robots (Muro, 2017). This accounts for the

outliers in robot penetration such as Detroit and Lansing, Michigan, with Detroit alone

adopting more than three times the number of industrial robots than any other metro area

(Muro, 2017). Thus, auto-centric commuting zones are informative outliers with respect to

robot penetration and workplace safety.
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According to the director of manufacturing, engineering, strategies and standards at

the International Automotive Components’ (IAC) plant, located in Ohio, robot development

is focused on tasks that are ”dirty, dull, and dangerous (Dolan, 2017).” For example, robots

that paint reduce workers’ exposure to potentially toxic chemicals, and robots that perform

tedious tasks reduce repetitive strain injury (Dolan, 2017). This may lead to the dissolution

of more dangerous occupations or, at the very least, dangerous or repetitive tasks performed

by humans. According to IAC officials, their workforce has been only minimally affected by

industrial robots, and workers replaced by robots were temporary employees or permanent

employees reassigned to other tasks (Dolan, 2017). Nonetheless, research by Acemoglu and

Restrepo (2020) suggests that industrial robots decreased aggregate employment, and this

effect is not unique to industrial robots in automobile manufacturing. Thus, the effect of

industrial robots on fatalities and hospitalizations likely reflects a combination of dissolving

dangerous occupations and making extant employment safer, with a potentially negative

effect on employment overall.

5 Conclusion

During the past three decades, workplace accidents and fatalities decreased as the

penetration of industrial robots increased. In this paper, we attempt to identify the causal

effect of industrial robots on workplace safety at the commuting zone level. For identifi-

cation, we exploit plausibly exogenous variation in robot exposure by combining variation

in industry composition across commuting zones with robot penetration by industry. To

measure workplace safety at the commuting zone level, we use data on OSHA inspections

following a work-related fatality or hospitalization.

We find negative and statistically significant effects of robot exposure on OSHA

fatalities and hospitalizations combined, but not fatalities alone. Additionally, the effects on

fatalities and hospitalizations are due largely to commuting zones that are heavy in automo-
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bile manufacturing. In fact, when robot penetration is measured separately for automobile

facturing and all other industries, only the former has a statsitically significant effect on work-

place safety. According to qualitative analysis, the effect of robot penetration on workplace

safety likely reflects both the dissolution of dangerous occupations and the improvement in

safety among extant employment.

This study contributes to a growing literature on the effects of industrial robots in

the workplace. This study is most comparable to a recent study by Gihleb et al. (2022). The

authors examine the effect of industrial robots on workplace injuries involving days away

from work, job restrictions, and job transfers, and find that that robot exposure decreased

work-related injuries. Taken together, these studies indicate that industrial robots may have

decreased less severe work-related injuries involving days away from work or hospitalizations,

but these effects do not appear to extend to more severe cases involving fatalities. This

distinction is important, since the value of statistical life is orders of magnitude larger than

the value statistical injury, estimated to range from $6.3 to $15.2 million and from $25,000

to $89,000, respectively. These findings, combined with related research on employment and

wages, are important for understanding the overall welfare effects of industrial robots in the

workplace.
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Table 1: Model of OSHA Fatality Rate and Robot Exposure, Stacked
Difference Model, Commuting Zone Level

(1) (2) (3) (4) (5) (6)

A. Three-year average
Robots -0.031 0.018 0.022 0.017 0.020 0.024

(0.020) (0.019) (0.018) (0.018) (0.018) (0.019)
R-Square 0.004 0.030 0.067 0.069 0.074 0.104

B. Four-year average
Robots -0.038** 0.009 0.008 0.001 0.006 0.011

(0.017) (0.019) (0.018) (0.018) (0.018) (0.017)
R-Square 0.007 0.042 0.075 0.077 0.085 0.110

C. Five-year average
Robots -0.047* 0.018 0.014 0.006 0.010 0.016

(0.023) (0.018) (0.018) (0.018) (0.019) (0.019)
R-Square 0.012 0.087 0.121 0.124 0.129 0.164

Control Variables
Region and period FE X X X X X
Demographics X X X X
Industry X X X
Other shocks X X
Change in demographics X
Observations 1,444 1,444 1,444 1,444 1,444 1,444

The outcome variable is the change in the natural log of the OSHA fatality rate, and the explanatory
variable of interest is robot exposure. The unit of observation is stacked differences from 1993 to
2000 and from 2000 to 2007 by US commuting zone. The covariates include time period dummies,
census division dummies, demographic characteristics, manufacturing share, exposure to Chinese
imports, the share of routine jobs, and change in demographic characteristics. Observations are
weighted by the baseline employment. Robust standard errors are in parentheses. *, **, ***
indicate statistical significance at the 10, 5, and 1 percent, respectively.

18



Table 2: Model of OSHA Fatality and Hopitalization Rate and Robot
Exposure, Stacked Difference Model, Commuting Zone Level

(1) (2) (3) (4) (5) (6)

A. Three-year average
Robots -0.104** -0.102* -0.102 -0.132** -0.129** -0.129**

(0.041) (0.056) (0.064) (0.060) (0.058) (0.056)
R-Square 0.043 0.078 0.124 0.147 0.155 0.162

B. Four-year average
Robots -0.093*** -0.082* -0.086 -0.114** -0.110** -0.109**

(0.029) (0.045) (0.052) (0.048) (0.046) (0.044)
R-Square 0.040 0.099 0.140 0.160 0.166 0.176

C. Five-year average
Robots -0.094*** -0.063* -0.064 -0.089*** -0.086*** -0.084***

(0.018) (0.034) (0.039) (0.033) (0.032) (0.031)
R-Square 0.045 0.130 0.172 0.189 0.196 0.206

Control Variables
Region and period FE X X X X X
Demographics X X X X
Industry X X X
Other shocks X X
Change in demographics X
Observations 1,444 1,444 1,444 1,444 1,444 1,444

The outcome variable is the change in the natural log of the OSHA fatality and hospitalization
rate, and the explanatory variable of interest is robot exposure. The unit of observation is stacked
differences from 1993 to 2000 and from 2000 to 2007 by US commuting zone. The covariates include
time period dummies, census division dummies, demographic characteristics, manufacturing share,
exposure to Chinese imports, the share of routine jobs, and change in demographic characteristics.
Observations are weighted by the baseline employment. Robust standard errors are in parentheses.
*, **, *** indicate statistical significance at the 10, 5, and 1 percent, respectively.
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Table 3: Model of OSHA Fatality and Hopitalization Rate and Robot
Exposure, Stacked Difference Model, Commuting Zone Level, Excluding

Outliers

(1) (2) (3) (4) (5) (6)

A. Three-year average
Robots -0.034 0.028 0.050 0.012 0.007 0.006

(0.041) (0.055) (0.057) (0.067) (0.065) (0.063)
R-Square 0.002 0.043 0.095 0.105 0.112 0.119

B. Four-year average
Robots -0.049 0.021 0.037 0.001 -0.003 -0.004

(0.034) (0.042) (0.043) (0.048) (0.046) (0.045)
R-Square 0.005 0.068 0.113 0.122 0.128 0.137

C. Five-year average
Robots -0.076** 0.016 0.032 -0.005 -0.009 -0.006

(0.033) (0.041) (0.040) (0.046) (0.044) (0.043)
R-Square 0.013 0.105 0.150 0.160 0.166 0.176

Control Variables
Region and period FE X X X X X
Demographics X X X X
Industry X X X
Other shocks X X
Change in demographics X
Observations 1,436 1,436 1,436 1,436 1,436 1,436

The outcome variable is the change in the natural log of the OSHA fatality and hospitalization
rate, and the explanatory variable of interest is robot exposure. The unit of observation is stacked
differences from 1993 to 2000 and from 2000 to 2007 by US commuting zone. The covariates include
time period dummies, census division dummies, demographic characteristics, manufacturing share,
exposure to Chinese imports, the share of routine jobs, and change in demographic characteristics.
Observations are weighted by the baseline employment. Robust standard errors are in parentheses.
*, **, *** indicate statistical significance at the 10, 5, and 1 percent, respectively.
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Table 4: Model of OSHA Hospitalization Rate and Robot Exposure, Stacked
Difference Model, Commuting Zone Level

(1) (2) (3) (4) (5) (6)

A. Three-year average
Robots, Auto -0.114*** -0.115** -0.118** -0.139** -0.133** -0.133**

(0.037) (0.046) (0.056) (0.056) (0.057) (0.055)
Robots, Other -0.068 -0.023 -0.008 -0.082 -0.105* -0.100

(0.046) (0.067) (0.064) (0.066) (0.061) (0.061)
R-Square 0.044 0.081 0.128 0.148 0.155 0.163

B. Four-year average
Robots, Auto -0.098*** -0.096*** -0.103** -0.122*** -0.116*** -0.115***

(0.024) (0.034) (0.042) (0.041) (0.042) (0.040)
Robots, Other -0.076* -0.001 0.017 -0.049 -0.067 -0.063

(0.045) (0.057) (0.056) (0.058) (0.053) (0.054)
R-Square 0.040 0.103 0.145 0.162 0.167 0.177

C. Five-year average
Robots, Auto -0.090*** -0.075*** -0.078** -0.096*** -0.090*** -0.088***

(0.018) (0.026) (0.031) (0.029) (0.030) (0.028)
Robots, Other -0.106** 0.005 0.020 -0.039 -0.059 -0.051

(0.040) (0.054) (0.052) (0.051) (0.044) (0.046)
R-Square 0.045 0.133 0.176 0.190 0.197 0.206

Control Variables
Region and period FE X X X X X
Demographics X X X X
Industry X X X
Other shocks X X
Change in demographics X
Observations 1,444 1,444 1,444 1,444 1,444 1,444

The outcome variable is the change in the natural log of the OSHA fatality and hospitalizationrate,
and the explanatory variable of interest is robot exposure. The unit of observation is stacked
differences from 1993 to 2000 and from 2000 to 2007 by US commuting zone. The covariates include
time period dummies, census division dummies, demographic characteristics, manufacturing share,
exposure to Chinese imports, the share of routine jobs, and change in demographic characteristics.
Observations are weighted by the baseline employment. Robust standard errors are in parentheses.
*, **, *** indicate statistical significance at the 10, 5, and 1 percent, respectively.
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Figure 1: Trends in Workplace Safety and Robot Penetration
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The BLS TRC (total recordable case) rate is the number of workplace injuries and illnesses
per 100 full-time equivalent workers, and the BLS fatality rate is the number of workplace
fatalities per 100,000 full-time equivalent workers. Both figures come from the Bureau of
Labor Statistics, Office of Safety, Health, and Working Conditions. Industrial robots are
the number of robots per 1,000 workers in the US and in five European countries, including
Denmark, Finland, France, Italy, and Sweden. The data on industrial robots come from the
International Federation of Robotics.
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Figure 2: Number of OSHA-Inspected Fatalities and Hospitalizations
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The figure plots the annual number of BLS fatalities and the number of OSHA fatalities
and hospitalizations. Due to the limited jurisdiction of OSHA inspections, BLS fatalities
exclude transportation and violence. OSHA fatalities are tabulated from data on workplace
inspections following fatal accidents.
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Figure 3: Number of OSHA-Inspected Fatalities and Hospitalizations
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The figure plots the relationship between the BLS fatality rate and OSHA rates by IFR
industry. Panel A is the OSHA fatality rate, and panel B is the OSHA fatality and hospital-
ization rate. The marker size is proportional to employment, and the line is the best linear
fit.
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Figure 4: Number of OSHA-Inspected Fatalities and Hospitalizations
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